NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
March 25, 2025 Yifan Yang
TBD -
April 1, 2025 Roman Kogay
TBD -
April 8, 2025 Jaya Srivastava
TBD -
April 15, 2025 Pascal Mutz
TBD -
April 18, 2025 Valentina Boeva, Department of Computer Science, ETH Zurich
Decoding tumor heterogeneity: computational methods for scRNA-seq and spatial omics
RECENT SEMINARS
-
March 11, 2025 Sofya Garushyants
Tmn – bacterial anti-phage defense system -
March 4, 2025 Sanasar Babajanyan
Evolution of antivirus defense in prokaryotes depending on the environmental virus load -
Feb. 25, 2025 Zhizheng Wang
GeneAgent: Self-verification Language Agent for Gene Set Analysis using Domain Databases -
Feb. 18, 2025 Samuel Lee
Efficient predictions of alternative protein conformations by AlphaFold2-based sequence association -
Feb. 11, 2025 Po-Ting Lai
Enhancing Biomedical Relation Extraction with Directionality
Scheduled Seminars on July 26, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
One of the effects of COVID-19 pandemic is a rapidly growing and changing stream of publications to inform clinicians, researchers, policy makers, and patients about the health, socio-economic, and cultural consequences of the pandemic. Managing this information stream manually is not feasible. Automatic Question Answering can quickly bring the most salient points to the user’s attention. Leveraging a collection of scientific articles, government websites, relevant news articles, curated social media posts, and questions asked by researchers, clinicians, and the general public, we developed a dataset to explore automatic Question Answering for multiple stakeholders. Analysis of questions asked by various stakeholders shows that while information needs of experts and the public may overlap, satisfactory answers to these questions often originate from different information sources or benefit from different approaches to answer generation. We believe that this dataset has the potential to support the development of question answering systems not only for epidemic questions, but for other domains with varying expertise such as legal or finance.