NLM DIR Seminar Schedule
UPCOMING SEMINARS
RECENT SEMINARS
-
Dec. 17, 2024 Joey Thole
Training set associations drive AlphaFold initial predictions of fold-switching proteins -
Dec. 10, 2024 Amr Elsawy
AI for Age-Related Macular Degeneration on Optical Coherence Tomography -
Dec. 3, 2024 Sarvesh Soni
Toward Relieving Clinician Burden by Automatically Generating Progress Notes -
Nov. 19, 2024 Benjamin Lee
Reiterative Translation in Stop-Free Circular RNAs -
Nov. 12, 2024 Devlina Chakravarty
Fold-switching reveals blind spots in AlphaFold predictions
Scheduled Seminars on May 31, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
We apply the theory of learning to physically renormalizable systems in an attempt to outline a theory of biological evolution as multilevel learning. To demonstrate the potential of the proposed theoretical framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the flow of information during learning and predicting the environment by evolving organisms. We also develop a phenomenological theory of evolution by combining the formalism of classical thermodynamics with a statistical description of learning. The maximum entropy principle constrained by the requirement for minimization of the loss function is employed to derive a canonical ensemble of organisms (population), the corresponding partition function (macroscopic counterpart of fitness), and free energy (macroscopic counterpart of additive fitness). We further define the biological counterparts of temperature (evolutionary temperature) as the measure of stochasticity of the evolutionary process and of chemical potential (evolutionary potential) as the amount of evolutionary work required to add a new trainable variable (such as an additional gene) to the evolving system. We demonstrate how this phenomenological approach can be used to study the “ideal mutation” model of evolution and its generalizations. Finally, we show that major transitions in evolution, such as the transition from an ensemble of molecules to an ensemble of organisms, that is, the origin of life, can be modeled as a special case of bona fide physical phase transitions that are associated with the emergence of a new type of grand canonical ensemble and the corresponding new level of description.