NLM DIR Seminar Schedule
UPCOMING SEMINARS
RECENT SEMINARS
-
May 2, 2025 Pascal Mutz
Characterization of covalently closed cirular RNAs detected in (meta)transcriptomic data -
May 2, 2025 Dr. Lang Wu
Integration of multi-omics data in epidemiologic research -
April 22, 2025 Stanley Liang, PhD
Large Vision Model for medical knowledge adaptation -
April 18, 2025 Valentina Boeva, Department of Computer Science, ETH Zurich
Decoding tumor heterogeneity: computational methods for scRNA-seq and spatial omics -
April 8, 2025 Jaya Srivastava
Leveraging a deep learning model to assess the impact of regulatory variants on traits and diseases
Scheduled Seminars on April 26, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Many pathogenic viruses are endemic among human populations and can cause a broad variety of diseases, some potentially leading to devastating pandemics. How virus populations maintain diversity and what selective pressures drive population turnover is not thoroughly understood. We conducted a large-scale phylodynamic analysis of 27 human pathogenic RNA viruses spanning diverse life history traits in search of unifying trends that shape virus evolution. For most virus species, we identify multiple, co-circulating lineages with low turnover rates. These lineages appear to be largely noncompeting and likely occupy semi-independent epidemiological niches that are not regionally or seasonally defined. Typically, intra-lineage mutational signatures are similar to inter-lineage signatures. The principal exception are members of the family Picornaviridae, for which mutations in capsid protein genes are primarily lineage-defining. Inter-lineage turnover is slower than expected under a neutral model whereas intra-lineage turnover is faster than the neutral expectation, further supporting the existence of independent niches. The persistence of virus lineages appears to stem from limited outbreaks within small communities so that only a small fraction of the global susceptible population is infected at any time. As disparate communities become increasingly connected through globalization, interaction and competition between lineages might increase as well, which could result in changing selective pressures and increased diversification and/or pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar, endemic viruses appears to merit global attention with respect to the prevention or mitigation of future pandemics.