NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
Jan. 14, 2025 Ryan Bell
Comprehensive analysis of the YprA-like helicase family provides deep insight into the evolution and potential mechanisms of widespread and largely uncharacterized prokaryotic antiviral defense systems -
Jan. 16, 2025 Qingqing Zhu
GPTRadScore and CT-Bench: Advancing Multimodal AI Evaluation and Benchmarking in CT Imaging -
Jan. 17, 2025 Xuegong Zhang
Using Large Cellular Models to Understand Cell Transcriptomics Language -
Jan. 21, 2025 Qiao Jin
Artificial Intelligence for Evidence-based Medicine -
Jan. 28, 2025 Kaleb Abram
TBD
RECENT SEMINARS
-
Dec. 17, 2024 Joey Thole
Training set associations drive AlphaFold initial predictions of fold-switching proteins -
Dec. 10, 2024 Amr Elsawy
AI for Age-Related Macular Degeneration on Optical Coherence Tomography -
Dec. 3, 2024 Sarvesh Soni
Toward Relieving Clinician Burden by Automatically Generating Progress Notes -
Nov. 19, 2024 Benjamin Lee
Reiterative Translation in Stop-Free Circular RNAs -
Nov. 12, 2024 Devlina Chakravarty
Fold-switching reveals blind spots in AlphaFold predictions
Scheduled Seminars on April 26, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Many pathogenic viruses are endemic among human populations and can cause a broad variety of diseases, some potentially leading to devastating pandemics. How virus populations maintain diversity and what selective pressures drive population turnover is not thoroughly understood. We conducted a large-scale phylodynamic analysis of 27 human pathogenic RNA viruses spanning diverse life history traits in search of unifying trends that shape virus evolution. For most virus species, we identify multiple, co-circulating lineages with low turnover rates. These lineages appear to be largely noncompeting and likely occupy semi-independent epidemiological niches that are not regionally or seasonally defined. Typically, intra-lineage mutational signatures are similar to inter-lineage signatures. The principal exception are members of the family Picornaviridae, for which mutations in capsid protein genes are primarily lineage-defining. Inter-lineage turnover is slower than expected under a neutral model whereas intra-lineage turnover is faster than the neutral expectation, further supporting the existence of independent niches. The persistence of virus lineages appears to stem from limited outbreaks within small communities so that only a small fraction of the global susceptible population is infected at any time. As disparate communities become increasingly connected through globalization, interaction and competition between lineages might increase as well, which could result in changing selective pressures and increased diversification and/or pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar, endemic viruses appears to merit global attention with respect to the prevention or mitigation of future pandemics.