NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 15, 2025 Noam Rotenberg
Cell phenotypes in the biomedical literature: a systematic analysis and the NLM CellLink text mining corpus
RECENT SEMINARS
-
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 1, 2025 Yoshitaka Inoue
Graph-Aware Interpretable Drug Response Prediction and LLM-Driven Multi-Agent Drug-Target Interaction Prediction -
June 10, 2025 Aleksandra Foerster
Interactions at pre-bonding distances and bond formation for open p-shell atoms: a step toward biomolecular interaction modeling using electrostatics -
June 3, 2025 MG Hirsch
Interactions among subclones and immunity controls melanoma progression -
May 29, 2025 Harutyun Sahakyan
In silico evolution of globular protein folds from random sequences
Scheduled Seminars on April 26, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Many pathogenic viruses are endemic among human populations and can cause a broad variety of diseases, some potentially leading to devastating pandemics. How virus populations maintain diversity and what selective pressures drive population turnover is not thoroughly understood. We conducted a large-scale phylodynamic analysis of 27 human pathogenic RNA viruses spanning diverse life history traits in search of unifying trends that shape virus evolution. For most virus species, we identify multiple, co-circulating lineages with low turnover rates. These lineages appear to be largely noncompeting and likely occupy semi-independent epidemiological niches that are not regionally or seasonally defined. Typically, intra-lineage mutational signatures are similar to inter-lineage signatures. The principal exception are members of the family Picornaviridae, for which mutations in capsid protein genes are primarily lineage-defining. Inter-lineage turnover is slower than expected under a neutral model whereas intra-lineage turnover is faster than the neutral expectation, further supporting the existence of independent niches. The persistence of virus lineages appears to stem from limited outbreaks within small communities so that only a small fraction of the global susceptible population is infected at any time. As disparate communities become increasingly connected through globalization, interaction and competition between lineages might increase as well, which could result in changing selective pressures and increased diversification and/or pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar, endemic viruses appears to merit global attention with respect to the prevention or mitigation of future pandemics.