NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
April 8, 2025 Jaya Srivastava
Leveraging a deep learning model to assess the impact of regulatory variants on traits and diseases -
April 15, 2025 Pascal Mutz
TBD -
April 18, 2025 Valentina Boeva, Department of Computer Science, ETH Zurich
Decoding tumor heterogeneity: computational methods for scRNA-seq and spatial omics -
April 22, 2025 Stanley Liang
TBD -
April 29, 2025 MG Hirsch
TBD
RECENT SEMINARS
-
April 1, 2025 Roman Kogay
Horizontal transfer of bacterial operons into eukaryote genomes -
March 25, 2025 Yifan Yang
Adversarial Manipulation and Data Memorization in Large Language Models for Medicine -
March 11, 2025 Sofya Garushyants
Tmn – bacterial anti-phage defense system -
March 4, 2025 Sanasar Babajanyan
Evolution of antivirus defense in prokaryotes depending on the environmental virus load -
Feb. 25, 2025 Zhizheng Wang
GeneAgent: Self-verification Language Agent for Gene Set Analysis using Domain Databases
Scheduled Seminars on March 17, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Existing works for automated echocardiography view classification are designed under the assumption that the classes (views) in the testing set must be similar to those appeared in the training set (closed world classification). This assumption may be too strict for real-world environments that are open and often have unseen examples (views), thereby drastically weakening the robustness of the classical classification approaches. In this work, we developed an open world active learning approach for echocardiography view classification, where the network classifies images of known views into their respective classes and identifies images of unknown views. Then, a clustering approach is used to cluster the unknown views into various groups to be labeled by an echocardiologist. Finally, the new labeled samples are added to the initial set of known views and used to update the classification network. This process of actively labeling unknown clusters and integrating them into the classification model significantly increases the efficiency of data labeling and the robustness of the classifier. Our results using an echocardiography dataset containing known and unknown views showed the superiority of the proposed approach as compared to the closed world view classification approaches.