NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 15, 2025 Noam Rotenberg
Cell phenotypes in the biomedical literature: a systematic analysis and the NLM CellLink text mining corpus
RECENT SEMINARS
-
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 1, 2025 Yoshitaka Inoue
Graph-Aware Interpretable Drug Response Prediction and LLM-Driven Multi-Agent Drug-Target Interaction Prediction -
June 10, 2025 Aleksandra Foerster
Interactions at pre-bonding distances and bond formation for open p-shell atoms: a step toward biomolecular interaction modeling using electrostatics -
June 3, 2025 MG Hirsch
Interactions among subclones and immunity controls melanoma progression -
May 29, 2025 Harutyun Sahakyan
In silico evolution of globular protein folds from random sequences
Scheduled Seminars on Jan. 18, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Thermodynamic selection is an indirect competition between agents feeding on the same energy resource and obeying the laws of thermodynamics. We examine scenarios of this selection, where the agent is modeled as a heat-engine coupled to two thermal baths and extracting work from the high-temperature bath. The agents can apply different work-extracting strategies, e.g. the maximum power or the maximum efficiency. They can also have a fixed structure or be adaptive. Depending on whether the resource (i.e. the high-temperature bath) is infinite or finite, the fitness of the agent relates to the work-power or the total extracted work. These two selection scenarios lead to increasing or decreasing efficiencies of the work-extraction, respectively. We also show that certain general concepts of game-theory and ecology--the prisoner's dilemma and the maximal power principle--emerge from the thermodynamics of competing agents. We emphasize the role of adaptation in developing efficient work-extraction mechanisms.