NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
April 8, 2025 Jaya Srivastava
Leveraging a deep learning model to assess the impact of regulatory variants on traits and diseases -
April 15, 2025 Pascal Mutz
TBD -
April 18, 2025 Valentina Boeva, Department of Computer Science, ETH Zurich
Decoding tumor heterogeneity: computational methods for scRNA-seq and spatial omics -
April 22, 2025 Stanley Liang
TBD -
April 29, 2025 MG Hirsch
TBD
RECENT SEMINARS
-
April 1, 2025 Roman Kogay
Horizontal transfer of bacterial operons into eukaryote genomes -
March 25, 2025 Yifan Yang
Adversarial Manipulation and Data Memorization in Large Language Models for Medicine -
March 11, 2025 Sofya Garushyants
Tmn – bacterial anti-phage defense system -
March 4, 2025 Sanasar Babajanyan
Evolution of antivirus defense in prokaryotes depending on the environmental virus load -
Feb. 25, 2025 Zhizheng Wang
GeneAgent: Self-verification Language Agent for Gene Set Analysis using Domain Databases
Scheduled Seminars on April 21, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Long-read sequencing technologies have substantially improved our ability to study large and complex genomes. However, de novo assembly of complex genomic and metagenomic datasets remains difficult. In this talk, I will give an algorithmic overview of the genome assembly problem. I will also highlight our Flye assembler that uses repeat graphs to generate accurate and complete assemblies. Finally, I will also present our new metagenomic assembler metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. Using metaFlye, we were able to recover complete or nearly-complete bacterial genomes from complex environmental samples, such as human gut or cow rumen. We also showed that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products.