NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 15, 2025 Noam Rotenberg
Cell phenotypes in the biomedical literature: a systematic analysis and the NLM CellLink text mining corpus
RECENT SEMINARS
-
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 1, 2025 Yoshitaka Inoue
Graph-Aware Interpretable Drug Response Prediction and LLM-Driven Multi-Agent Drug-Target Interaction Prediction -
June 10, 2025 Aleksandra Foerster
Interactions at pre-bonding distances and bond formation for open p-shell atoms: a step toward biomolecular interaction modeling using electrostatics -
June 3, 2025 MG Hirsch
Interactions among subclones and immunity controls melanoma progression -
May 29, 2025 Harutyun Sahakyan
In silico evolution of globular protein folds from random sequences
Scheduled Seminars on April 21, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Long-read sequencing technologies have substantially improved our ability to study large and complex genomes. However, de novo assembly of complex genomic and metagenomic datasets remains difficult. In this talk, I will give an algorithmic overview of the genome assembly problem. I will also highlight our Flye assembler that uses repeat graphs to generate accurate and complete assemblies. Finally, I will also present our new metagenomic assembler metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. Using metaFlye, we were able to recover complete or nearly-complete bacterial genomes from complex environmental samples, such as human gut or cow rumen. We also showed that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products.