NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 15, 2025 Noam Rotenberg
Cell phenotypes in the biomedical literature: a systematic analysis and the NLM CellLink text mining corpus
RECENT SEMINARS
-
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 1, 2025 Yoshitaka Inoue
Graph-Aware Interpretable Drug Response Prediction and LLM-Driven Multi-Agent Drug-Target Interaction Prediction -
June 10, 2025 Aleksandra Foerster
Interactions at pre-bonding distances and bond formation for open p-shell atoms: a step toward biomolecular interaction modeling using electrostatics -
June 3, 2025 MG Hirsch
Interactions among subclones and immunity controls melanoma progression -
May 29, 2025 Harutyun Sahakyan
In silico evolution of globular protein folds from random sequences
Scheduled Seminars on Nov. 10, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Background: Symbiotic relationships are ubiquitous in the biosphere. Inter-species symbiosis is impacted by intra-specific distinctions, in particular, those defined by the age structure of a population. Older individuals compete with younger individuals for resources despite being less likely to reproduce, diminishing the fitness of the population. Conversely, however, older individuals can support the reproduction of younger individuals, increasing the population fitness. Parasitic relationships are commonly age structured, typically, more adversely affecting older hosts.
Results: We employ mathematical modeling to explore the differential effects of collaborative or competitive host age structures on host-parasite relationships. A classical epidemiological compartment model is constructed with three disease states: susceptible, infected, and recovered. Each of these three states is partitioned into two compartments representing young, potentially reproductive, and old, post-reproductive, hosts, yielding 6 compartments in total. In order to describe competition and collaboration between old and young compartments, we model the reproductive success to depend on the fraction of young individuals in the population. Collaborative populations with relatively greater numbers of post-reproductive hosts enjoy greater reproductive success whereas in purely competitive populations, increasing the post-reproductive subpopulation reduces reproductive success. However, in competitive populations, virulent pathogens preferentially targeting old individuals can increase the population fitness.
Conclusions: We demonstrate that, in collaborative host populations, pathogens strictly impacting older, post-reproductive individuals can reduce population fitness even more than pathogens that directly impact younger, potentially reproductive individuals. In purely competitive populations, the reverse is observed, and we demonstrate that endemic, virulent pathogens can oxymoronically form a mutualistic relationship with the host, increasing the fitness of the host population. Applications to endangered species conservation and invasive species containment are discussed.