NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
March 25, 2025 Yifan Yang
TBD -
April 1, 2025 Roman Kogay
TBD -
April 8, 2025 Jaya Srivastava
TBD -
April 15, 2025 Pascal Mutz
TBD -
April 18, 2025 Valentina Boeva, Department of Computer Science, ETH Zurich
Decoding tumor heterogeneity: computational methods for scRNA-seq and spatial omics
RECENT SEMINARS
-
March 11, 2025 Sofya Garushyants
Tmn – bacterial anti-phage defense system -
March 4, 2025 Sanasar Babajanyan
Evolution of antivirus defense in prokaryotes depending on the environmental virus load -
Feb. 25, 2025 Zhizheng Wang
GeneAgent: Self-verification Language Agent for Gene Set Analysis using Domain Databases -
Feb. 18, 2025 Samuel Lee
Efficient predictions of alternative protein conformations by AlphaFold2-based sequence association -
Feb. 11, 2025 Po-Ting Lai
Enhancing Biomedical Relation Extraction with Directionality
Scheduled Seminars on April 18, 2023
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
There are two fundamentally distinct but inextricably linked types of biological evolutionary units, reproducers and replicators. Reproducers are cells and organelles that reproduce via various forms of division and maintain the physical continuity of compartments and their content. Replicators are genetic elements (GE), including genomes of cellular organisms and various autonomous elements, that both cooperate with reproducers and rely on the latter for replication. All known cells and organisms comprise a union between replicators and reproducers. We explore a model in which cells emerged via symbiosis between primordial ‘metabolic’ reproducers (protocells) which evolved, on short time scales, via a primitive form of selection and random drift, and mutualist replicators. Mathematical modeling identifies the conditions, under which GE-carrying protocells can outcompete GE-less ones, taking into account that, from the earliest stages of evolution, replicators split into mutualists and parasites. Analysis of the model shows that, for the GE-containing protocells to win the competition and to be fixed in evolution, it is essential that the birth-death process of the GE is coordinated with the rate of protocell division. At the early stages of evolution, random, high-variance cell division is advantageous compared to symmetrical division because the former provides for the emergence of protocells containing only mutualists, preventing takeover by parasites. These findings illuminate the likely order of key events on the evolutionary route from protocells to cells that involved the origin of genomes, symmetrical cell division and anti-parasite defense systems.