NLM DIR Seminar Schedule
UPCOMING SEMINARS
RECENT SEMINARS
-
Dec. 17, 2024 Joey Thole
Training set associations drive AlphaFold initial predictions of fold-switching proteins -
Dec. 10, 2024 Amr Elsawy
AI for Age-Related Macular Degeneration on Optical Coherence Tomography -
Dec. 3, 2024 Sarvesh Soni
Toward Relieving Clinician Burden by Automatically Generating Progress Notes -
Nov. 19, 2024 Benjamin Lee
Reiterative Translation in Stop-Free Circular RNAs -
Nov. 12, 2024 Devlina Chakravarty
Fold-switching reveals blind spots in AlphaFold predictions
Scheduled Seminars on April 27, 2023
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Although homologous protein sequences are expected to adopt similar structures, some amino acid substitutions can interconvert α-helices and β-sheets. Such fold switching may have occurred over evolutionary history, but supporting evidence has been limited by the: (1) abundance and diversity of sequenced genes, (2) quantity of experimentally determined protein structures, and (3) assumptions underlying the statistical methods used to infer homology. Here, we overcame these barriers by applying multiple statistical methods to a family of ~600,000 bacterial response regulator proteins. We found that their homologous DNA-binding subunits assume divergent structures: helix-turn-helix versus α-helix+β-sheet (winged helix). Phylogenetic analyses, ancestral sequence reconstruction, and AlphaFold2 models indicated that amino acid substitutions facilitated a switch from helix-turn-helix into winged helix. This structural transformation likely expanded DNA-binding specificity. Our approach uncovers an evolutionary pathway between two protein folds and provides methodology to identify secondary structure switching in other protein families.