NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
Dec. 10, 2024 Amr Elsawy
AI for Age-Related Macular Degeneration on Optical Coherence Tomography -
Dec. 17, 2024 Joey Thole
TBD -
Jan. 7, 2025 Qiao Jin
TBD -
Jan. 14, 2025 Ryan Bell
TBD -
Jan. 21, 2025 Qingqing Zhu
TBD
RECENT SEMINARS
-
Dec. 3, 2024 Sarvesh Soni
Toward Relieving Clinician Burden by Automatically Generating Progress Notes -
Nov. 19, 2024 Benjamin Lee
Reiterative Translation in Stop-Free Circular RNAs -
Nov. 12, 2024 Devlina Chakravarty
Fold-switching reveals blind spots in AlphaFold predictions -
Nov. 5, 2024 Max Burroughs
Revisiting the co-evolution of multicellularity and immunity across the tree of life -
Nov. 4, 2024 Finn Werner
African Swine Fever Virus transcription – from transcriptome to molecular structure
Scheduled Seminars on Feb. 13, 2024
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
In this talk, I will present our experience of applying Large Language Models (LLMs) to biomedicine at the BioNLP group. I will first briefly introduce some basics of LLMs, including auto-regressive language modeling, scaling, alignment, few-shot learning, and chain-of-though reasoning. I will share a case study on biomedical question answering for better understanding of these concepts. Despite their great successes, LLMs are known to hallucinate confident-sounding but inaccurate content. In the second part, I will introduce two approaches that augment LLMs to reduce hallucinations in biomedicine, namely retrieval augmentation and tool augmentation. For the former, I will talk about our perspective on how LLMs will impact information seeking from biomedical literature. For the latter, I will present our GeneGPT work for teaching LLMs to use NCBI Web APIs. Finally, with the knowledge gained from the first two parts, I will share our application research, TrialGPT, for patient-to-trial matching with LLMs.