NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
March 25, 2025 Yifan Yang
TBD -
April 1, 2025 Roman Kogay
TBD -
April 8, 2025 Jaya Srivastava
TBD -
April 15, 2025 Pascal Mutz
TBD -
April 18, 2025 Valentina Boeva, Department of Computer Science, ETH Zurich
Decoding tumor heterogeneity: computational methods for scRNA-seq and spatial omics
RECENT SEMINARS
-
March 11, 2025 Sofya Garushyants
Tmn – bacterial anti-phage defense system -
March 4, 2025 Sanasar Babajanyan
Evolution of antivirus defense in prokaryotes depending on the environmental virus load -
Feb. 25, 2025 Zhizheng Wang
GeneAgent: Self-verification Language Agent for Gene Set Analysis using Domain Databases -
Feb. 18, 2025 Samuel Lee
Efficient predictions of alternative protein conformations by AlphaFold2-based sequence association -
Feb. 11, 2025 Po-Ting Lai
Enhancing Biomedical Relation Extraction with Directionality
Scheduled Seminars on Feb. 27, 2024
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
In medical imaging, leveraging Artificial Intelligence (AI) significantly enhances the precision and efficiency of radiology report generation. Our research introduces two key methodologies that collectively aim to refine the generation and assessment of these reports by integrating AI with the expertise of radiology professionals.
Initially, our approach focuses on improving report preparation by utilizing longitudinal chest X-ray (CXR) data along with historical reports from the MIMIC-CXR dataset. We developed the Longitudinal-MIMIC dataset, a comprehensive collection that incorporates a patient's historical and current visit data, enabling a more informed analysis. This data powers a transformer-based model featuring a cross-attention mechanism and a memory-driven decoder, which pre-fills the 'findings' section of radiology reports by analyzing a patient's past and present CXRs and reports. This technique not only minimizes reporting errors but also enhances the report's accuracy by incorporating extensive patient history.
Moving to the evaluation phase, we integrate the expertise of professional radiologists with the computational efficiency of Large Language Models (LLMs), such as GPT-3.5 and GPT-4. Employing methods like In-Context Instruction Learning (ICIL) and Chain of Thought (CoT) reasoning, our approach aligns AI evaluations with the nuanced judgment of radiology experts. This collaborative model significantly outperforms traditional evaluation metrics, offering a more accurate and detailed assessment of AI-generated reports. The validation of our approach through detailed annotations from radiology professionals sets a new standard for the accurate evaluation of medical reports.
Together, these methodologies represent a synergistic approach to improving radiology report generation and evaluation. By combining longitudinal patient data with expert radiological insight and AI innovation, our work promises to significantly enhance the quality and efficiency of patient care in the field of radiology.