NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
April 8, 2025 Jaya Srivastava
Leveraging a deep learning model to assess the impact of regulatory variants on traits and diseases -
April 15, 2025 Pascal Mutz
TBD -
April 18, 2025 Valentina Boeva, Department of Computer Science, ETH Zurich
Decoding tumor heterogeneity: computational methods for scRNA-seq and spatial omics -
April 22, 2025 Stanley Liang
TBD -
April 29, 2025 MG Hirsch
TBD
RECENT SEMINARS
-
April 1, 2025 Roman Kogay
Horizontal transfer of bacterial operons into eukaryote genomes -
March 25, 2025 Yifan Yang
Adversarial Manipulation and Data Memorization in Large Language Models for Medicine -
March 11, 2025 Sofya Garushyants
Tmn – bacterial anti-phage defense system -
March 4, 2025 Sanasar Babajanyan
Evolution of antivirus defense in prokaryotes depending on the environmental virus load -
Feb. 25, 2025 Zhizheng Wang
GeneAgent: Self-verification Language Agent for Gene Set Analysis using Domain Databases
Scheduled Seminars on March 28, 2024
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Although most globular proteins fold into a single stable structure, an increasing number have been shown to remodel their secondary and tertiary structures in response to cellular stimuli. State-of-the-art algorithms predict that these fold-switching proteins adopt only one stable structure, missing their functionally critical alternative folds. Why these algorithms predict a single fold is unclear, but all of them infer protein structure from coevolved amino acid pairs. Here, we hypothesize that coevolutionary signatures are being missed. Suspecting that single-fold variants could be masking these signatures, we developed an approach, called Alternative Contact Enhancement (ACE), to search both highly diverse protein superfamilies-composed of single-fold and fold-switching variants–and protein subfamilies with more fold-switching variants. ACE successfully revealed coevolution of amino acid pairs uniquely corresponding to both conformations of 56/56 fold-switching proteins from distinct families. Then, we used ACE-derived contacts to (1) predict two experimentally consistent conformations of a candidate protein with unsolved structure and (2) develop a blind prediction pipeline for fold-switching proteins. The discovery of widespread dual-fold coevolution indicates that fold-switching sequences have been preserved by natural selection, implying that their functionalities provide evolutionary advantage and paving the way for predictions of diverse protein structures from single sequences.