NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
June 3, 2025 MG Hirsch
Interactions among subclones and immunity controls melanoma progression -
June 10, 2025 Aleksandra Foerster
TBD -
June 17, 2025 Yoshitaka Inoue
TBD -
June 19, 2025 Ermin Hodzic
TBD -
June 24, 2025 Leslie Ronish
TBD
RECENT SEMINARS
-
May 29, 2025 Harutyun Sahakyan
In silico evolution of globular protein folds from random sequences -
May 20, 2025 Ajith Pankajam
A roadmap from single cell to knowledge graph -
May 2, 2025 Pascal Mutz
Characterization of covalently closed cirular RNAs detected in (meta)transcriptomic data -
May 2, 2025 Dr. Lang Wu
Integration of multi-omics data in epidemiologic research -
April 22, 2025 Stanley Liang, PhD
Large Vision Model for medical knowledge adaptation
Scheduled Seminars on April 1, 2025
In-person: Building 38A/B2N14 NCBI Library or Meeting Link
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
In prokaryotes, functionally linked genes are typically clustered into operons, which are transcribed into a single mRNA, providing for the coregulation of the production of the respective proteins, whereas eukaryotes generally lack operons. We explored the possibility that some prokaryotic operons persist in eukaryotic genomes after horizontal gene transfer (HGT) from bacteria. Extensive comparative analysis of prokaryote and eukaryote genomes revealed 33 gene pairs originating from bacterial operons, mostly, encoding enzymes of the same metabolic pathways, and represented in distinct clades of fungi or amoebozoa. This amount of HGT is about an order of magnitude less than that observed for the respective individual genes. These operon fragments appear to be relatively recent acquisitions as indicated by their narrow phylogenetic spread and low intron density. In 20 of the 33 horizontally acquired operonic gene pairs, the genes are fused in the respective group of eukaryotes so that the encoded proteins become domains of a multifunctional protein ensuring coregulation and correct stoichiometry. We hypothesize that bacterial operons acquired via HGT initially persist in eukaryotic genomes under a neutral evolution regime, and subsequently are either disrupted by genome rearrangement or undergo gene fusion which is then maintained by selection.