NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
April 22, 2025 Stanley Liang, PhD
Large Vision Model for medical knowledge adaptation -
April 29, 2025 Pascal Mutz
Characterization of covalently closed cirular RNAs detected in (meta)transcriptomic data -
May 2, 2025 Dr. Lang Wu
Integration of multi-omics data in epidemiologic research -
May 6, 2025 Leslie Ronish
TBD -
May 8, 2025 MG Hirsch
TBD
RECENT SEMINARS
-
April 18, 2025 Valentina Boeva, Department of Computer Science, ETH Zurich
Decoding tumor heterogeneity: computational methods for scRNA-seq and spatial omics -
April 8, 2025 Jaya Srivastava
Leveraging a deep learning model to assess the impact of regulatory variants on traits and diseases -
April 1, 2025 Roman Kogay
Horizontal transfer of bacterial operons into eukaryote genomes -
March 25, 2025 Yifan Yang
Adversarial Manipulation and Data Memorization in Large Language Models for Medicine -
March 11, 2025 Sofya Garushyants
Tmn – bacterial anti-phage defense system
Scheduled Seminars on April 1, 2025
In-person: Building 38A/B2N14 NCBI Library or Meeting Link
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
In prokaryotes, functionally linked genes are typically clustered into operons, which are transcribed into a single mRNA, providing for the coregulation of the production of the respective proteins, whereas eukaryotes generally lack operons. We explored the possibility that some prokaryotic operons persist in eukaryotic genomes after horizontal gene transfer (HGT) from bacteria. Extensive comparative analysis of prokaryote and eukaryote genomes revealed 33 gene pairs originating from bacterial operons, mostly, encoding enzymes of the same metabolic pathways, and represented in distinct clades of fungi or amoebozoa. This amount of HGT is about an order of magnitude less than that observed for the respective individual genes. These operon fragments appear to be relatively recent acquisitions as indicated by their narrow phylogenetic spread and low intron density. In 20 of the 33 horizontally acquired operonic gene pairs, the genes are fused in the respective group of eukaryotes so that the encoded proteins become domains of a multifunctional protein ensuring coregulation and correct stoichiometry. We hypothesize that bacterial operons acquired via HGT initially persist in eukaryotic genomes under a neutral evolution regime, and subsequently are either disrupted by genome rearrangement or undergo gene fusion which is then maintained by selection.