NLM DIR Seminar Schedule
UPCOMING SEMINARS
-
Sept. 9, 2025 Chih-Hsuan Wei
No Data Left Behind: FAIR-SMart Enables FAIR Access to Supplementary Materials for Research Transparency -
Sept. 16, 2025 James Leaman JR.
TBD -
Sept. 23, 2025 Martha Nelson
TBD -
Sept. 30, 2025 Erez Persi
TBD -
Oct. 7, 2025 Liana Yeganova
TBD
RECENT SEMINARS
-
July 15, 2025 Noam Rotenberg
Cell phenotypes in the biomedical literature: a systematic analysis and the NLM CellLink text mining corpus -
July 3, 2025 Matthew Diller
Using Ontologies to Make Knowledge Computable -
July 1, 2025 Yoshitaka Inoue
Graph-Aware Interpretable Drug Response Prediction and LLM-Driven Multi-Agent Drug-Target Interaction Prediction -
June 10, 2025 Aleksandra Foerster
Interactions at pre-bonding distances and bond formation for open p-shell atoms: a step toward biomolecular interaction modeling using electrostatics -
June 3, 2025 MG Hirsch
Interactions among subclones and immunity controls melanoma progression
Scheduled Seminars on March 29, 2022
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Insertions in the SARS-CoV-2 genome have the potential to drive viral evolution, but the source of the insertions is often unknown. Recent proposals have suggested that human RNAs could be a source of some insertions, but the small size of many insertions makes this difficult to confirm. Through an analysis of available direct RNA sequencing data from SARS-CoV-2 infected cells, we show that viral-host chimeric RNAs are formed through what are likely stochastic RNA-dependent RNA polymerase template switching events. Through an analysis of the publicly available GISAID SARS-CoV-2 genome collection, we identified two genomic insertions in circulating SARS-CoV-2 variants that are identical to regions of the human 18S and 28S rRNAs. These results provide direct evidence of the formation of viral-host chimeric sequences and the integration of host genetic material into the SARS-CoV-2 genome, highlighting the potential importance of host-derived insertions in viral evolution.