NLM DIR Seminar Schedule
UPCOMING SEMINARS
RECENT SEMINARS
-
Dec. 17, 2024 Joey Thole
Training set associations drive AlphaFold initial predictions of fold-switching proteins -
Dec. 10, 2024 Amr Elsawy
AI for Age-Related Macular Degeneration on Optical Coherence Tomography -
Dec. 3, 2024 Sarvesh Soni
Toward Relieving Clinician Burden by Automatically Generating Progress Notes -
Nov. 19, 2024 Benjamin Lee
Reiterative Translation in Stop-Free Circular RNAs -
Nov. 12, 2024 Devlina Chakravarty
Fold-switching reveals blind spots in AlphaFold predictions
Scheduled Seminars on March 19, 2024
Contact NLMDIRSeminarScheduling@mail.nih.gov with questions about this seminar.
Abstract:
Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present the first formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein–Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data. Applying our model to sublines derived from single cells of a mouse melanoma revealed that sublines with distinct phenotypes are underlined by different patterns of gene expression adaptation, indicating non-genetic mechanisms of cancer evolution.
Interestingly, sublines previously observed to be resistant to anti-CTLA-4 treatment showed adaptive expression of genes related to invasion and non-canonical Wnt signaling, whereas sublines that responded to treatment showed adaptive expression of genes related to proliferation and canonical Wnt signalling. Our results suggest that clonal phenotypes emerge as the result of specific adaptivity patterns of gene expression.